Modulation of olfactory bulb network activity by serotonin: synchronous inhibition of mitral cells mediated by spatially localized GABAergic microcircuits.

نویسندگان

  • Loren J Schmidt
  • Ben W Strowbridge
چکیده

Although inhibition has often been proposed as a central mechanism for coordinating activity in the olfactory system, relatively little is known about how activation of different inhibitory local circuit pathways can generate coincident inhibition of principal cells. We used serotonin (5-HT) as a pharmacological tool to induce spiking in ensembles of mitral cells (MCs), a primary output neuron in the olfactory bulb, and recorded intracellularly from pairs of MCs to directly assay coincident inhibitory input. We find that 5-HT disynaptically depolarized granule cells (GCs) only slightly but robustly increased the frequency of inhibitory postsynaptic inhibitory currents in MCs. Serotonin also triggered more coincident IPSCs in pairs of nearby MCs than expected by chance, including in MCs with truncated apical dendrites that lack glomerular synapses. That serotonin-triggered coincident inhibition in the absence of elevated GC somatic firing rates suggested that synchronized MC inhibition arose from glutamate receptor-mediated depolarization of GC dendrites or other (non-GC) interneurons outside the glomerular layer. Tetanic stimulation of GCL afferents to GCs triggered robust GC spiking, coincident inhibition in pairs of MCs, and recruited large-amplitude IPSCs in MCs. Enhancing neurotransmission through NMDARs by lowering the external Mg2+ concentration also increased inhibitory tone onto MCs but failed to promote synchronized inhibition. These results demonstrate that coincident MC inhibition can occur through multiple circuit pathways and suggests that the functional coordination between different GABAergic synapses in individual GCs can be dynamically regulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serotonin increases synaptic activity in olfactory bulb glomeruli.

Serotoninergic fibers densely innervate olfactory bulb glomeruli, the first sites of synaptic integration in the olfactory system. Acting through 5HT2A receptors, serotonin (5HT) directly excites external tufted cells (ETCs), key excitatory glomerular neurons, and depolarizes some mitral cells (MCs), the olfactory bulb's main output neurons. We further investigated 5HT action on MCs and determi...

متن کامل

Differential serotonergic modulation across the main and accessory olfactory bulbs.

KEY POINTS There are serotonergic projections to both the main (MOB) and the accessory olfactory bulb (AOB). Current-clamp experiments demonstrate that serotonergic afferents are largely excitatory for mitral cells (MCs) in the MOB where 5-HT2A receptors mediate a direct excitatory action. Serotonergic afferents are predominately inhibitory for MCs in the AOB. There are two types of inhibition:...

متن کامل

Distinct deep short-axon cell subtypes of the main olfactory bulb provide novel intrabulbar and extrabulbar GABAergic connections.

A universal feature of neuronal microcircuits is the presence of GABAergic interneurons that control the activity of glutamatergic principal cells and each other. In the rat main olfactory bulb (MOB), GABAergic granule and periglomerular cells innervate mitral and tufted cells, but the source of their own inhibition remains elusive. Here, we used a combined electrophysiological and morphologica...

متن کامل

Sparse Distributed Representation of Odors in a Large-scale Olfactory Bulb Circuit

In the olfactory bulb, lateral inhibition mediated by granule cells has been suggested to modulate the timing of mitral cell firing, thereby shaping the representation of input odorants. Current experimental techniques, however, do not enable a clear study of how the mitral-granule cell network sculpts odor inputs to represent odor information spatially and temporally. To address this critical ...

متن کامل

Disruption of GABA(A) receptors on GABAergic interneurons leads to increased oscillatory power in the olfactory bulb network.

Synchronized neural activity is believed to be essential for many CNS functions, including neuronal development, sensory perception, and memory formation. In several brain areas GABA(A) receptor-mediated synaptic inhibition is thought to be important for the generation of synchronous network activity. We have used GABA(A) receptor beta3 subunit deficient mice (beta3-/-) to study the role of GAB...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Learning & memory

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2014